検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Development of a radiation tolerant laser-induced breakdown spectroscopy system using a single crystal micro-chip laser for remote elemental analysis

田村 浩司; 中西 隆造; 大場 弘則; 狩野 貴宏; 柴田 卓弥; 平等 拓範*; 若井田 育夫

Journal of Nuclear Science and Technology, 8 Pages, 2024/00

 被引用回数:0 パーセンタイル:0.01(Nuclear Science & Technology)

For the development of the remote elemental analysis method in a radiation environment based on the laser-induced breakdown spectroscopy (LIBS), the radiation effects on the laser oscillation properties of the single crystal (SC) Nd: YAG microchip laser (MCL) were investigated and compared with those of ceramics Nd: YAG MCL. The laser oscillation properties were measured under gamma-ray irradiation as a function of dose rate. The effects on the SC MCL properties were found to be very small compared to those on the ceramics, indicating minimal radiation effects on the LIBS signal when using SC MCL. Pulse energy and oscillating build-up time (BUT) were measured for a cumulative dose exceeding 1400 kGy. The pulse energy remained stable, and the laser continued to oscillate under irradiation. The BUT also remained stable, demonstrating negligible optical loss accumulation that could affect laser properties even at the demonstrated cumulative dose. The results indicate that the effects of dose rate and cumulative dose on SC MCL laser properties were minimal. The SC MCL was then integrated into the LIBS system, and the gadolinium signal of composite oxides, simulating fuel debris, was successfully measured at the dose rate of 5 kGy/hr. These findings highlight the radiation tolerance of SC MCL as a laser medium for remote LIBS applications in harsh radiation environments.

1 件中 1件目~1件目を表示
  • 1